top of page

Xia, L., Kano, F., Hashimoto, N., Ding, C., Xu, Y., Hibi, H., Iwasaki, T., Tanaka, E., and Yamamoto, A. (2023). Conditioned Medium from Stem Cells of Human Exfoliated Deciduous Teeth Partially Alters the Expression of Inflammation-associated Molecules of Mouse Condylar Chondrocytes via Secreted Frizzled-related Protein 1. J Oral Heal Biosci 35, 52-60. 10.20738/johb.35.2_52.

 

Narwidina, A., Miyazaki, A., Iwata, K., Kurogoushi, R., Sugimoto, A., Kudo, Y., Kawarabayashi, K., Yamakawa, Y., Akazawa, Y., Kitamura, T., Nakagawa, H., Yamaguchi-Ueda, K., Hasegawa, T., Yoshizaki, K., Fukumoto, S., Yamamoto, A., Ishimaru, N., Iwasaki, T., and Iwamoto, T. (2023). Iroquois homeobox 3 regulates odontoblast proliferation and differentiation mediated by Wnt5a expression. Biochemical and Biophysical Research Communications 650, 47-54. 10.1016/j.bbrc.2023.02.004.

 

Kano, F., Hashimoto, N., Liu, Y., Xia, L., Nishihara, T., Oki, W., Kawarabayashi, K., Mizusawa, N., Aota, K., Sakai, T., Azuma, M., Hibi, H., Iwasaki, T., Iwamoto, T., Horimai, N., and Yamamoto, A. (2023). Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia. Scientific Reports 13, 2706. 10.1038/s41598-023-29176-w.

 

Ueda, T., Ito, T., Inden, M., Kurita, H., Yamamoto, A., and Hozumi, I. (2022). Stem Cells From Human Exfoliated Deciduous Teeth-Conditioned Medium (SHED-CM) is a Promising Treatment for Amyotrophic Lateral Sclerosis. Frontiers in Pharmacology 13, 805379. 10.3389/fphar.2022.805379.

 

Liu, Y., Kano, F., Hashimoto, N., Xia, L., Zhou, Q., Feng, X., Hibi, H., Miyazaki, A., Iwamoto, T., Matsuka, Y., Zhang, Z., Tanaka, E., and Yamamoto, A. (2022). Conditioned Medium From the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Neuropathic Pain in a Partial Sciatic Nerve Ligation Model. Frontiers in Pharmacology 13, 745020. 10.3389/fphar.2022.745020.

 

Waskitho, A., Yamamoto, Y., Raman, S., Kano, F., Yan, H., Raju, R., Afroz, S., Morita, T., Ikutame, D., Okura, K., Oshima, M., Yamamoto, A., Baba, O., and Matsuka, Y. (2021). Peripherally Administered Botulinum Toxin Type A Localizes Bilaterally in Trigeminal Ganglia of Animal Model. Toxins 13, 704. 10.3390/toxins13100704.

 

Muto, H., Ito, T., Tanaka, T., Yokoyama, S., Yamamoto, K., Imai, N., Ishizu, Y., Maeda, K., Honda, T., Ishikawa, T., Kato, A., Ohshiro, T., Kano, F., Yamamoto, A., Sakai, K., Hibi, H., Ishigami, M., and Fujishiro, M. (2021). Conditioned medium from stem cells derived from human exfoliated deciduous teeth ameliorates NASH via the Gut-Liver axis. Scientific Reports 11, 18778. 10.1038/s41598-021-98254-8.

 

Liu, Y., Xia, L., Kano, F., Hashimoto, N., Matsuka, Y., Yamamoto, A., and Tanaka, E. (2021). Low-Intensity Pulsed Ultrasound Ameliorates Neuropathic Pain Induced by Partial Sciatic Nerve Ligation Via Regulating Macrophage Polarization. J Oral Heal Biosci 34, 11-18. 10.20738/johb.34.1_11.

 

Khurel‐Ochir, T., Izawa, T., Iwasa, A., Kano, F., Yamamoto, A., and Tanaka, E. (2021). The immunoregulatory role of p21 in the development of the temporomandibular joint‐osteoarthritis. Clin Exp Dent Res. 10.1002/cre2.404.

 

Tanaka, E., Liu, Y., Xia, L., Ogasawara, N., Sakamaki, T., Kano, F., Hashimoto, N., Feng, X., and Yamamoto, A. (2020). Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Annals of Biomedical Engineering 14, 578 - 515. 10.1007/s10439-020-02540-x.

 

Ogasawara, N., Kano, F., Hashimoto, N., Mori, H., Liu, Y., Xia, L., Sakamaki, T., Hibi, H., Iwamoto, T., Tanaka, E., and Yamamoto, A. (2020). Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis and Cartilage 28, 831-841. 10.1016/j.joca.2020.03.010.

 

Miura‐Yura, E., Tsunekawa, S., Naruse, K., Nakamura, N., Motegi, M., Nakai‐Shimoda, H., Asano, S., Kato, M., Yamada, Y., Izumoto‐Akita, T., Yamamoto, A., Himeno, T., Kondo, M., Kato, Y., Nakamura, J., and Kamiya, H. (2020). Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin‐induced diabetic mice. J Diabetes Invest 11, 28-38. 10.1111/jdi.13085.

 

Kitase, Y., Sato, Y., Ueda, K., Suzuki, T., Mikrogeorgiou, A., Sugiyama, Y., Matsubara, K., Okabe, Y.T., Shimizu, S., Hirata, H., Yukawa, H., Baba, Y., Tsuji, M., Takahashi, Y., Yamamoto, A., and Hayakawa, M. (2020). A Novel Treatment with Stem Cells from Human Exfoliated Deciduous Teeth for Hypoxic-Ischemic Encephalopathy in Neonatal Rats. Stem Cells and Development 29, 63 - 74. 10.1089/scd.2019.0221.

 

Kato, M., Tsunekawa, S., Nakamura, N., Miura-Yura, E., Yamada, Y., Hayashi, Y., Nakai-Shimoda, H., Asano, S., Hayami, T., Motegi, M., Asano-Hayami, E., Sasajima, S., Morishita, Y., Himeno, T., Kondo, M., Kato, Y., Izumoto-Akita, T., Yamamoto, A., Naruse, K., Nakamura, J., and Kamiya, H. (2020). Secreted Factors from Stem Cells of Human Exfoliated Deciduous Teeth Directly Activate Endothelial Cells to Promote All Processes of Angiogenesis. Cells 9, 2385. 10.3390/cells9112385.

 

Hashimoto, N., Ito, S., Tsuchida, A., Bhuiyan, R.H., Okajima, T., Yamamoto, A., Furukawa, K., Ohmi, Y., and Furukawa, K. (2019). The ceramide moiety of disialoganglioside (GD3) is essential for GD3 recognition by the sialic acid–binding lectin SIGLEC7 on the cell surface. The Journal of biological chemistry 294, 10833 - 10845. 10.1074/jbc.ra118.007083.

 

Ando, Y., Ishikawa, J., Fujio, M., Matsushita, Y., Wakayama, H., Hibi, H., and Yamamoto, A. (2019). Stromal cell-derived factor-1 accelerates bone regeneration through multiple regenerative mechanisms. J Oral Maxillofac Surg Medicine Pathology 31, 245-250. 10.1016/j.ajoms.2019.02.005.

 

Ishikawa, J., Kano, F., Ando, Y., Hibi, H., and Yamamoto, A. (2018). Monocyte chemoattractant protein-1 and secreted ectodomain of sialic acid-binding Ig-like lectin-9 enhance bone regeneration by inducing M2 macrophages. J Oral Maxillofac Surg Medicine Pathology 31, 169-174. 10.1016/j.ajoms.2018.12.007.

 

Matsumoto, T., Takahashi, N., Kojima, T., Yoshioka, Y., Ishikawa, J., Furukawa, K., Ono, K., Sawada, M., Ishiguro, N., and Yamamoto, A. (2017). Soluble Siglec-9 suppresses arthritis in a collagen-induced arthritis mouse model and inhibits M1 activation of RAW264.7 macrophages. Arthritis Research & Therapy 18, 133. 10.1186/s13075-016-1035-9.

 

Ito, T., Ishigami, M., Matsushita, Y., Hirata, M., Matsubara, K., Ishikawa, T., Hibi, H., Ueda, M., Hirooka, Y., Goto, H., and Yamamoto, A. (2017). Secreted Ectodomain of SIGLEC-9 and MCP-1 Synergistically Improve Acute Liver Failure in Rats by Altering Macrophage Polarity. Scientific Reports 7, 44043. 10.1038/srep44043.

 

Shimojima, C., Takeuchi, H., Jin, S., Parajuli, B., Hattori, H., Suzumura, A., Hibi, H., Ueda, M., and Yamamoto, A. (2016). Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis. The Journal of Immunology 196, 4164-4171. 10.4049/jimmunol.1501457.

 

Kano, F., Matsubara, K., Ueda, M., Hibi, H., and Yamamoto, A. (2016). Secreted Ectodomain of Sialic Acid‐Binding Ig‐Like Lectin‐9 and Monocyte Chemoattractant Protein‐1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity. Stem Cells 35, 641-653. 10.1002/stem.2534.

 

Ishikawa, J., Takahashi, N., Matsumoto, T., Yoshioka, Y., Yamamoto, N., Nishikawa, M., Hibi, H., Ishigro, N., Ueda, M., Furukawa, K., and Yamamoto, A. (2016). Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone 83, 210-219. 10.1016/j.bone.2015.11.012.

 

Hirata, M., Ishigami, M., Matsushita, Y., Ito, T., Hattori, H., Hibi, H., Goto, H., Ueda, M., and Yamamoto, A. (2016). Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis. Stem cells translational medicine 5, 1416-1424. 10.5966/sctm.2015-0353.

 

Yamaguchi, S., Shibata, R., Yamamoto, N., Nishikawa, M., Hibi, H., Tanigawa, T., Ueda, M., Murohara, T., and Yamamoto, A. (2015). Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Scientific Reports 5, 16295. 10.1038/srep16295.

 

Wakayama, H., Hashimoto, N., Matsushita, Y., Matsubara, K., Yamamoto, N., Hasegawa, Y., Ueda, M., and Yamamoto, A. (2015). Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 17, 1119-1129. 10.1016/j.jcyt.2015.04.009.

 

Sun, Y., Finne‐Wistrand, A., Waag, T., Xing, Z., Yassin, M., Yamamoto, A., Mustafa, K., Steinmüller‐Nethl, D., Krueger, A., and Albertsson, A.C. (2015). Reinforced Degradable Biocomposite by Homogenously Distributed Functionalized Nanodiamond Particles. Macromol Mater Eng 300, 436-447. 10.1002/mame.201400387.

 

Mita, T., Furukawa-Hibi, Y., Takeuchi, H., Hattori, H., Yamada, K., Hibi, H., Ueda, M., and Yamamoto, A. (2015). Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293, 189-197. 10.1016/j.bbr.2015.07.043.

 

Matsushita, Y., Ishigami, M., Matsubara, K., Kondo, M., Wakayama, H., Goto, H., Ueda, M., and Yamamoto, A. (2015). Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. Journal of Tissue Engineering and Regenerative Medicine 11, 1888-1896. 10.1002/term.2086.

 

Matsubara, K., Matsushita, Y., Sakai, K., Kano, F., Kondo, M., Noda, M., Hashimoto, N., Imagama, S., Ishiguro, N., Suzumura, A., Ueda, M., Furukawa, K., and Yamamoto, A. (2015). Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Promote Recovery after Rat Spinal Cord Injury by Altering Macrophage Polarity. Journal of Neuroscience 35, 2452-2464. 10.1523/jneurosci.4088-14.2015.

 

Izumoto-Akita, T., Tsunekawa, S., Yamamoto, A., Uenishi, E., Ishikawa, K., Ogata, H., Iida, A., Ikeniwa, M., Hosokawa, K., Niwa, Y., Maekawa, R., Yamauchi, Y., Seino, Y., Hamada, Y., Hibi, H., Arima, H., Ueda, M., and Oiso, Y. (2015). Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. Bmj Open Diabetes Res Care 3, e000128. 10.1136/bmjdrc-2015-000128.

 

Hattori, Y., Kim, H., Tsuboi, N., Yamamoto, A., Akiyama, S., Shi, Y., Katsuno, T., Kosugi, T., Ueda, M., Matsuo, S., and Maruyama, S. (2015). Therapeutic Potential of Stem Cells from Human Exfoliated Deciduous Teeth in Models of Acute Kidney Injury. PLoS ONE 10, e0140121. 10.1371/journal.pone.0140121.

 

Fujio, M., Xing, Z., Sharabi, N., Xue, Y., Yamamoto, A., Hibi, H., Ueda, M., Fristad, I., and Mustafa, K. (2015). Conditioned media from hypoxic‐cultured human dental pulp cells promotes bone healing during distraction osteogenesis. Journal of Tissue Engineering and Regenerative Medicine 11, 2116-2126. 10.1002/term.2109.

 

Fujii, H., Matsubara, K., Sakai, K., Ito, M., Ohno, K., Ueda, M., and Yamamoto, A. (2015). Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 1613, 59-72. 10.1016/j.brainres.2015.04.001.

 

Yamamoto, A., Sakai, K., Matsubara, K., Kano, F., and Ueda, M. (2014). Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 78, 16-20. 10.1016/j.neures.2013.10.010.

 

Yamamoto, A., Matsubara, K., Kano, F., and Sakai, K. (2014). Animal Models for Stem Cell Therapy. Methods Mol Biology 1213, 321-328. 10.1007/978-1-4939-1453-1_26.

 

Yamagata, M., Yamamoto, A., Kako, E., Kaneko, N., Matsubara, K., Sakai, K., Sawamoto, K., and Ueda, M. (2013). Human Dental Pulp-Derived Stem Cells Protect Against Hypoxic-Ischemic Brain Injury in Neonatal Mice. Stroke 44, 551-554. 10.1161/strokeaha.112.676759.

 

Takikawa, S., Yamamoto, A., Sakai, K., Shohara, R., Iwase, A., Kikkawa, F., and Ueda, M. (2013). Human umbilical cord-derived mesenchymal stromal cells promote sensory recovery in a spinal cord injury rat model. Stem Cell Discov 2013, 155-163. 10.4236/scd.2013.33020.

 

Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., Ueda, M., and Yamamoto, A. (2013). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone 61, 82-90. 10.1016/j.bone.2013.12.029.

 

Shohara, R., Yamamoto, A., Takikawa, S., Iwase, A., Hibi, H., Kikkawa, F., and Ueda, M. (2012). Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms. Cytotherapy 14, 1171-1181. 10.3109/14653249.2012.706705.

 

Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., Sakamoto, K., Tauchi, R., Wakao, N., Imagama, S., Hibi, H., Kadomatsu, K., Ishiguro, N., and Ueda, M. (2011). Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation 122, 80-90. 10.1172/jci59251.

 

Fujio, M., Yamamoto, A., Ando, Y., Shohara, R., Kinoshita, K., Kaneko, T., Hibi, H., and Ueda, M. (2011). Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone 49, 693-700. 10.1016/j.bone.2011.06.024.

 

Nagano, T., Takehara, S., Takahashi, M., Aizawa, S., and Yamamoto, A. (2006). Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. Development 133, 4643-4654. 10.1242/dev.02657.

 

Yamamoto, A., Nagano, T., Takehara, S., Hibi, M., and Aizawa, S. (2005). Shisa Promotes Head Formation through the Inhibition of Receptor Protein Maturation for the Caudalizing Factors, Wnt and FGF. Cell 120, 223-235. 10.1016/j.cell.2004.11.051.

 

Yamamoto, A., Kemp, C., Bachiller, D., Geissert, D., and Robertis, E.M.D. (2000). Mouse paraxial protocadherin is expressed in trunk mesoderm and is not essential for mouse development. Genesis 27, 49-57. 10.1002/1526-968x(200006)27:2<49::aid-gene10>3.0.co;2-7.

 

Sawada, A., Fritz, A., Jiang, Y., Yamamoto, A., Yamasu, K., Kuroiwa, A., Saga, Y., and Takeda, H. (2000). Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691-1702. 10.1242/dev.127.8.1691.

 

Yamamoto, A., Amacher, S.L., Kim, S.H., Geissert, D., Kimmel, C.B., and Robertis, E.M.D. (1998). Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development 125, 3389-3397. 10.1242/dev.125.17.3389.

 

Kim, S.H., Yamamoto, A., Bouwmeester, T., Agius, E., and Robertis, E.M. (1998). The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125, 4681-4690. 10.1242/dev.125.23.4681.

 

Yamamoto, A., Haraguchi, M., Yamashiro, S., Fukumoto, S., Furukawa, K., Takamiya, K., Atsuta, M., Shiku, H., and Furukawa, K. (1996). Heterogeneity in the Expression Pattern of Two Ganglioside Synthase Genes During Mouse Brain Development. Journal of Neurochemistry 66, 26-34. 10.1046/j.1471-4159.1996.66010026.x.

 

Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, K., and Aizawa, S. (1996). Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proceedings of the National Academy of Sciences 93, 10662-10667. 10.1073/pnas.93.20.10662.

 

Yamamoto, A., Yamashiro, S., Takamiya, K., Atsuta, M., Shiku, H., and Furukawa, K. (1995). Diverse Expression of β1,4‐N‐Acetylgalactosaminyltransferase Gene in the Adult Mouse Brain. Journal of Neurochemistry 65, 2417-2424. 10.1046/j.1471-4159.1995.65062417.x.

 

Yamamoto, A., Atsuta, M., and Hamatani, K. (1992). Restricted expression of recombination activating gene (RAG-1) in mouse lymphoid tissues. Cell Biochemistry and Function 10, 71 - 77. 10.1002/cbf.290100202.

bottom of page